Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 17(11): e0275623, 2022.
Article in English | MEDLINE | ID: covidwho-2098746

ABSTRACT

An important unmet need revealed by the COVID-19 pandemic is the near-real-time identification of potentially fitness-altering mutations within rapidly growing SARS-CoV-2 lineages. Although powerful molecular sequence analysis methods are available to detect and characterize patterns of natural selection within modestly sized gene-sequence datasets, the computational complexity of these methods and their sensitivity to sequencing errors render them effectively inapplicable in large-scale genomic surveillance contexts. Motivated by the need to analyze new lineage evolution in near-real time using large numbers of genomes, we developed the Rapid Assessment of Selection within CLades (RASCL) pipeline. RASCL applies state of the art phylogenetic comparative methods to evaluate selective processes acting at individual codon sites and across whole genes. RASCL is scalable and produces automatically updated regular lineage-specific selection analysis reports: even for lineages that include tens or hundreds of thousands of sampled genome sequences. Key to this performance is (i) generation of automatically subsampled high quality datasets of gene/ORF sequences drawn from a selected "query" viral lineage; (ii) contextualization of these query sequences in codon alignments that include high-quality "background" sequences representative of global SARS-CoV-2 diversity; and (iii) the extensive parallelization of a suite of computationally intensive selection analysis tests. Within hours of being deployed to analyze a novel rapidly growing lineage of interest, RASCL will begin yielding JavaScript Object Notation (JSON)-formatted reports that can be either imported into third-party analysis software or explored in standard web-browsers using the premade RASCL interactive data visualization dashboard. By enabling the rapid detection of genome sites evolving under different selective regimes, RASCL is well-suited for near-real-time monitoring of the population-level selective processes that will likely underlie the emergence of future variants of concern in measurably evolving pathogens with extensive genomic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , COVID-19/epidemiology , COVID-19/genetics , Phylogeny , Codon/genetics , Sequence Analysis , Genome, Viral
2.
Nat Commun ; 13(1): 3645, 2022 06 25.
Article in English | MEDLINE | ID: covidwho-1908172

ABSTRACT

Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.


Subject(s)
COVID-19 , Superinfection , Genome, Viral/genetics , Humans , New York City/epidemiology , Recombination, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: covidwho-1758789

ABSTRACT

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Mol Biol Evol ; 38(12): 5678-5684, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1402409

ABSTRACT

The programmed frameshift element (PFE) rerouting translation from ORF1a to ORF1b is essential for the propagation of coronaviruses. The combination of genomic features that make up PFE-the overlap between the two reading frames, a slippery sequence, as well as an ensemble of complex secondary structure elements-places severe constraints on this region as most possible nucleotide substitution may disrupt one or more of these elements. The vast amount of SARS-CoV-2 sequencing data generated within the past year provides an opportunity to assess the evolutionary dynamics of PFE in great detail. Here, we performed a comparative analysis of all available coronaviral genomic data available to date. We show that the overlap between ORF1a and ORF1b evolved as a set of discrete 7, 16, 22, 25, and 31 nucleotide stretches with a well-defined phylogenetic specificity. We further examined sequencing data from over 1,500,000 complete genomes and 55,000 raw read data sets to demonstrate exceptional conservation and detect signatures of selection within the PFE region.


Subject(s)
Coronavirus/genetics , Open Reading Frames , Phylogeny , SARS-CoV-2/genetics , Nucleotides
6.
PLoS Comput Biol ; 17(5): e1008923, 2021 05.
Article in English | MEDLINE | ID: covidwho-1226887

ABSTRACT

The COVID-19 pandemic is shifting teaching to an online setting all over the world. The Galaxy framework facilitates the online learning process and makes it accessible by providing a library of high-quality community-curated training materials, enabling easy access to data and tools, and facilitates sharing achievements and progress between students and instructors. By combining Galaxy with robust communication channels, effective instruction can be designed inclusively, regardless of the students' environments.


Subject(s)
COVID-19/epidemiology , Computer-Assisted Instruction , Education, Distance/organization & administration , COVID-19/virology , Computational Biology , Humans , Information Dissemination , Pandemics , SARS-CoV-2/isolation & purification
7.
PLoS Pathog ; 16(8): e1008643, 2020 08.
Article in English | MEDLINE | ID: covidwho-712942

ABSTRACT

The current state of much of the Wuhan pneumonia virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) research shows a regrettable lack of data sharing and considerable analytical obfuscation. This impedes global research cooperation, which is essential for tackling public health emergencies and requires unimpeded access to data, analysis tools, and computational infrastructure. Here, we show that community efforts in developing open analytical software tools over the past 10 years, combined with national investments into scientific computational infrastructure, can overcome these deficiencies and provide an accessible platform for tackling global health emergencies in an open and transparent manner. Specifically, we use all SARS-CoV-2 genomic data available in the public domain so far to (1) underscore the importance of access to raw data and (2) demonstrate that existing community efforts in curation and deployment of biomedical software can reliably support rapid, reproducible research during global health crises. All our analyses are fully documented at https://github.com/galaxyproject/SARS-CoV-2.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Pneumonia, Viral/virology , Public Health , Severe Acute Respiratory Syndrome/virology , COVID-19 , Data Analysis , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL